Two PhD positions (1: vegetation ecology, 2: ecosystem function/host-parasite interactions) are now open for applicants at Karlstad University. Both positions are full time for five years within the River Ecology and Management (NRRV) research group and include 80 % research and 20 % department duties (mainly teaching).

The applications for both positions close on 31 January 2019.

 

PhD position in vegetation ecology

River Klarälven, Värmland

The project will study which factors control diaspore dispersal and plant community composition along boreal streams, which in turn may have cascading effects on functional plant diversity and ecosystem functioning. The specific research questions to be addressed will be decided in consultation with the candidate. Areas of particular interest are (1) the effects of local and landscape-scale factors for plant species composition and diversity and cascading effects on ecosystem functioning and (2) studies of factors promoting or constraining plant dispersal along streams.

Read more and apply for the position here!

 

Ecosystem function/host-parasite interactions

The position will focus on either the role of mussels for ecosystem function or host-parasite interactions. Areas of interest are (1) the role of mussels for stream ecosystem function and (2) host-parasite interactions between mussels and their host fish. The specific research questions to be addressed will be decided in consultation with the candidate.

Read more and apply for the position here!

As part of the Gullspång salmon and -trout monitoring program, a group of people from the management group, Gammelkroppa Lax and Jyväskylä University/Fortum perform redd surveys in the river every year in early December. The salmon and trout in the Gullspång River spawn fairly late in the season, first trout in October-early November and then salmon in November until around the beginning of December.

This year I was invited to assist in the redd surveys, which I of course said yes to! Any chance to learn more about the Gullspång salmon and -trout is valuable for the model I’m making. Plus, it’s nice to get out of the office, even when the temperature is close to zero. And it’s also very inspiring to meet other people who are studying the Gullspång salmonids.

 

Lilla Åråsforsen. With sunrise at around 8:30 and sundown at 15:30, we had to be efficient to cover the three areas (about 6.4 hectares) in the precious daylight hours the four days.

 

So, we started by the Årås bay (Åråsviken) on Tuesday, and slowly worked our way upstream. With layers upon layers (upon layers…etc.) under our waders, and thick, wadded rubber gloves we walked gracefully around in the three spawning areas – Lilla & Stora Åråsforsen and Gullspångsforsen- to look for anything that could be a fish-made structure in the gravel beds. Sometimes we had redds that looked like textbook examples of redds, other times they didn’t look like anything. To confirm or disprove that it was an active redd, we did some careful digging in the pit itself to see if it contained at least two live eggs. The females often do some test diggings before the “real deal”.

We marked confirmed redds with conspicuously colored stones so that they can be found again in the spring; their location was also mapped with a GPS. Initially, we started with Finnish marking stones, but to our slight surprise they ran out (see why further down). We therefore had to settle with slightly lighter Swedish stones the last few days. Sadly, Norway was not represented with any stones (but we’ll see next year).

We also took measurements of the dimensions of the redds, as well as the depth and velocities along the gradient between start of pit and end of tail. I quickly took the role of propeller lady, taking the flow velocity measurements with NRRV’s OTT meters. It was interesting to see how much higher the velocity generally was in the tail compared to in the pit.

 

Horseshoe-formed tail of a large redd in Lilla Åråsforsen rapids marked with a white-painted and numbered stone. The marking stones were bought from a local stone dealer in Finland and brought to Gullspång.

 

I’ve saved the best for the end: the reason why we kept running out of marking stones was that we counted a record number of redds this year! We found redds also where they usually are not found, in total around 190 of them! It’s a careful victory, because we don’t yet know how many of them are salmon respective trout redds. But it was a nice early Christmas present, and I’m glad I joined!

/Kristine Lund Björnås

 

Learn more:

Management report on the monitoring results on Gullspång salmon and –trout in 2017:

http://extra.lansstyrelsen.se/vanern/Sv/publikationer/2018-2020/Sidor/Gullsp%C3%A5ngs%C3%A4lven_2017.aspx

 

Salmon females design their redds in a sophisticated way to increase velocities and dissolved oxygen to the egg pockets as shown with a 3D fluid dynamic model:

Tonina, D. & Buffington, J.M. (2009). Doi:10.1139/F09-146

River Rottnan in winter

Johan Watz, Olle Calles, Niclas Carlsson, Teemu Collin, Ari Huusko, Jörgen Johnsson, Anders Nilsson, Johnny Norrgård and Daniel Nyqvist recently published the paper “Wood addition in the hatchery and river environments affects post-release performance of overwintering brown trout” in the journal Freshwater Biology.

In the abstract, the authors write:

“1. Habitat structural complexity affects the behaviour and physiology of individuals, and responses to the  environment can be immediate or influence performance later in life through delayed effects.

2. Here, we investigated how structural enrichment, both pre-release in the hatchery rearing environment and post-release in the wild, influenced winter growth and site fidelity of brown trout stocked into side channels of a regulated river.

3. Experiencing structural enrichment in the rearing environment during 3 months in autumn had no pre-release effect on growth, but a delayed positive effect after release during the subsequent winter. Moreover, trout recaptured in wood-treated sections of the side channels had grown more than trout recaptured in control sections. Wood enrichment in the side channels also increased overwinter site fidelity.

Johan Watz at the field site.

4. These results show that adding structure during a relatively short period may alter growth trajectories, and adding wood to side channels is a cost-effective method to enhance winter habitat carrying capacity for  juvenile salmonids in regulated rivers.”

Access the paper here.

Teemu Collin tracking trout at the field site.

 

Dead wood in a side channel of the river.

 

River Rottnan.

Haydn Washington, Guillaume Chapron, Helen Kopnina, Patrick Curry, Joe Gray and John Piccolo recently published the paper “Foregrounding ecojustice in conservation” in the journal Biological Conservation.

In the abstract of the paper, the authors write:
“Justice for nature remains a confused term. In recent decades justice has predominantly been limited to humanity, with a strong focus on social justice, and its spin-off – environmental justice for people. We first examine the formal rationale for ecocentrism and ecological ethics, as this underpins attitudes towards justice for nature, and show how justice for nature has been affected by concerns about dualisms and by strong anthropocentric bias. We next consider the traditional meaning of social justice, alongside the recent move by some scholars to push justice for nature into social justice, effectively weakening any move to place ecojustice centre-stage. This, we argue, is both unethical and doomed to failure as a strategy to protect life on Earth. The dominant meaning of ‘environmental justice’ – in essence, justice for humans in regard to environmental issues – is also explored. We next discuss what ecological justice (ecojustice) is, and how academia has ignored it for many decades. The charge of ecojustice being ‘antihuman’ is refuted. We argue that distributive justice can also apply to nature, including an ethic of bio-proportionality, and also consider how to reconcile social justice and ecojustice, arguing that ecojustice must now be foregrounded to ensure effective conservation. After suggesting a ‘Framework for implementing ecojustice’ for conservation practitioners, we conclude by urging academia to foreground ecojustice.”

You can access the full paper here.

On Tuesday October 30, Peter Hambäck, Professor at Stockholm University, will give a seminar at Karlstad University titled “Spatial subsidies for shore-line spiders: evidence from molecular gut content analysis and stable isotopes”. The seminar will start at 13:15 in room 5F416, everyone who wants to are welcome to attend the seminar.

Daniel Nyqvist, Jonas Elghagen, Marius Heiss and Olle Calles recently published the article “An angled rack with a bypass and a nature-like fishway pass Atlantic salmon smolts downstream at a hydropower dam” in the journal Marine and Freshwater Research.

In the abstract, the authors write:

Hydropower dams disrupt longitudinal connectivity and cause fragmentation of river systems, which has led to declines in migratory fish species. Atlantic salmon smolts rely on intact longitudinal connectivity to move downstream from rearing habitats in freshwater to feeding grounds at sea. Smolts often suffer increased mortality and delays when they encounter hydropower plants during their downstream migration. Currently, there are few examples of downstream passage solutions that allow safe and timely passage. We assessed the performance of two passage solutions at a hydropower dam, namely, an angled 15-mm rack with a bypass and a large nature-like fishway. The performance of these new fish passage solutions was evaluated by tracking radio-tagged Atlantic salmon smolts as they encountered the facilities. The radio-tagged smolts passed the dam 9.5 h after release (median) and exhibited a dam-passage efficiency of 84%, with passage rates increasing with body length. Fish passage occurred through both the rack bypass and the naturelike fishway. The passage efficiencies were 70–95% for the rack bypass and 47% for the nature-like fishway. The new fish passage facilities resulted in improved passage conditions at the site, confirming that angled racks with bypasses as best practise solutions for downstream passage, but also that large nature-like fishways may act as downstream passage routes for salmon.

Access the paper here, or contact any of the authors.

A Dolly Varden trout (Salvelinus malma).

On Tuesday 16 October, Johan Watz from Karlstad University will give a seminar titled: “Report from a postdoctoral research stay in Sapporo and results from a field experiment: Condition-specific competition between two Japanese charr species”. The seminar will start at 13:15 in room 5F416 at Karlstad University. Everyone who wants to are welcome to attend the seminar.

Amy Newsom on lake Alstern.

In August and September 2018, Amy Newsom from Germany visited Karlstad University and did an internship with NRRV. Here she writes about her months at Karlstad University.

“Having spent a year at Karlstad University as an exchange student in 2017 in the framework of my bachelor program “Environmental and Sustainability Studies” at the Leuphana University in Lüneburg, Germany, I had already been able to gain a first impression of the university’s biology department, which sparked my interest in freshwater ecology. Consequently, I was thrilled to have the opportunity to join the Naturresurs rinnande vatten Team for a six-week internship in August and September of 2018.

During the weeks I spent at Karlstad University, I was able to work with different researchers, getting to know a variety of projects and greatly extending my previous knowledge on freshwater and riparian ecology, in particular river connectivity. My main aim in this internship was to gain more practical research experience, so I was glad to be able to spend a lot of time both in the lab and in the field. For example, my work included processing raw data on the ventilation rates of young trout to assess differences in metabolism efficiency, counting the eggs of spiders gathered in the field and preparing samples for stable isotope analysis to assess the impact of hydro dams on food web interactions of fish. This was a particularly interesting experience as stable isotope analysis was a new scientific procedure to me, and I was keen to learn more about it. I was also excited to join in some of the field work conducted during my time at NRRV, collecting fish, invertebrates and plankton samples from the lake Alstern and electrofishing in the rivers Mörrumsån and Emån to assess the overall community composition at different sites. I was furthermore able to gain valuable insights into the design of research experiments while accompanying the setting up of an experimental flume in Älvkarleby and the preparation of eel traps in the river Alsterälven. In the time I spent in the office, I was also able to gather more experience in data analysis and scientific writing, both helpful preparations for my upcoming bachelor thesis.

Amy Newsom dissecting a crayfish.

Returning to Karlstad also gave me the opportunity to improve my Swedish, reconnect with old friends and make new contacts, as well as further explore the forests, rivers and lakes in the area that I have come to love so much. My thanks go out to John Piccolo, on whose invitation I was able join NRRV as an intern, the International Offices both in Karlstad and at my home university for helping me with the administrative process, and the German foundation Meifort Stiftung, whose generous support made this internship possible for me. I am also incredibly grateful to all the researchers at the KAU biology department who warmly welcomed me into their team, took the time to introduce me to their work and helped me gain new knowledge and experience, in particular Olle Calles, Rachel Bowes, Larry Greenberg, Denis Lafage, Karl Filipsson, Andrew Harbicht, Lovisa Lind and Niclas Carlsson.”

Amy Newsom and Andrew Harbicht (NRRV-postdoc) electrofishing in river Mörrumsån.