On Tuesday 5 March (tomorrow) Anna Hagelin, PhD student at Karlstad University, will give a pre-dissertation talk titled “Conservation of landlocked Atlantic salmon in a regulated river: behaviour of migratory spawners and juveniles”. The seminar starts at 13:15 in room 5F416. Everyone is welcome to attend the seminar.

Anna will defend her doctoral thesis on 12 April at 10:00 in room 1B309 at Karlstad University. More information will come closer to the dissertation.

As part of the Gullspång salmon and -trout monitoring program, a group of people from the management group, Gammelkroppa Lax and Jyväskylä University/Fortum perform redd surveys in the river every year in early December. The salmon and trout in the Gullspång River spawn fairly late in the season, first trout in October-early November and then salmon in November until around the beginning of December.

This year I was invited to assist in the redd surveys, which I of course said yes to! Any chance to learn more about the Gullspång salmon and -trout is valuable for the model I’m making. Plus, it’s nice to get out of the office, even when the temperature is close to zero. And it’s also very inspiring to meet other people who are studying the Gullspång salmonids.


Lilla Åråsforsen. With sunrise at around 8:30 and sundown at 15:30, we had to be efficient to cover the three areas (about 6.4 hectares) in the precious daylight hours the four days.


So, we started by the Årås bay (Åråsviken) on Tuesday, and slowly worked our way upstream. With layers upon layers (upon layers…etc.) under our waders, and thick, wadded rubber gloves we walked gracefully around in the three spawning areas – Lilla & Stora Åråsforsen and Gullspångsforsen- to look for anything that could be a fish-made structure in the gravel beds. Sometimes we had redds that looked like textbook examples of redds, other times they didn’t look like anything. To confirm or disprove that it was an active redd, we did some careful digging in the pit itself to see if it contained at least two live eggs. The females often do some test diggings before the “real deal”.

We marked confirmed redds with conspicuously colored stones so that they can be found again in the spring; their location was also mapped with a GPS. Initially, we started with Finnish marking stones, but to our slight surprise they ran out (see why further down). We therefore had to settle with slightly lighter Swedish stones the last few days. Sadly, Norway was not represented with any stones (but we’ll see next year).

We also took measurements of the dimensions of the redds, as well as the depth and velocities along the gradient between start of pit and end of tail. I quickly took the role of propeller lady, taking the flow velocity measurements with NRRV’s OTT meters. It was interesting to see how much higher the velocity generally was in the tail compared to in the pit.


Horseshoe-formed tail of a large redd in Lilla Åråsforsen rapids marked with a white-painted and numbered stone. The marking stones were bought from a local stone dealer in Finland and brought to Gullspång.


I’ve saved the best for the end: the reason why we kept running out of marking stones was that we counted a record number of redds this year! We found redds also where they usually are not found, in total around 190 of them! It’s a careful victory, because we don’t yet know how many of them are salmon respective trout redds. But it was a nice early Christmas present, and I’m glad I joined!

/Kristine Lund Björnås


Learn more:

Management report on the monitoring results on Gullspång salmon and –trout in 2017:



Salmon females design their redds in a sophisticated way to increase velocities and dissolved oxygen to the egg pockets as shown with a 3D fluid dynamic model:

Tonina, D. & Buffington, J.M. (2009). Doi:10.1139/F09-146

Daniel Nyqvist, Jonas Elghagen, Marius Heiss and Olle Calles recently published the article “An angled rack with a bypass and a nature-like fishway pass Atlantic salmon smolts downstream at a hydropower dam” in the journal Marine and Freshwater Research.

In the abstract, the authors write:

Hydropower dams disrupt longitudinal connectivity and cause fragmentation of river systems, which has led to declines in migratory fish species. Atlantic salmon smolts rely on intact longitudinal connectivity to move downstream from rearing habitats in freshwater to feeding grounds at sea. Smolts often suffer increased mortality and delays when they encounter hydropower plants during their downstream migration. Currently, there are few examples of downstream passage solutions that allow safe and timely passage. We assessed the performance of two passage solutions at a hydropower dam, namely, an angled 15-mm rack with a bypass and a large nature-like fishway. The performance of these new fish passage solutions was evaluated by tracking radio-tagged Atlantic salmon smolts as they encountered the facilities. The radio-tagged smolts passed the dam 9.5 h after release (median) and exhibited a dam-passage efficiency of 84%, with passage rates increasing with body length. Fish passage occurred through both the rack bypass and the naturelike fishway. The passage efficiencies were 70–95% for the rack bypass and 47% for the nature-like fishway. The new fish passage facilities resulted in improved passage conditions at the site, confirming that angled racks with bypasses as best practise solutions for downstream passage, but also that large nature-like fishways may act as downstream passage routes for salmon.

Access the paper here, or contact any of the authors.

The experimental flume “Kungsrännan” under construction in Älvkarleby.

Hydropower dams block migration routes and disrupt longitudinal connectivity in rivers, thereby posing a threat to migratory fish species. Various fish passage solutions have been implemented to improve connectivity with varying success. For downstream migrating fish, low sloping turbine intake racks are used to guide fish to bypasses. Current knowledge, however, is based on hydropower plants with intake capacities <72 cm. There is also a trade-off between electricity generation and fish guidance (smaller bar spacing – better for fish, larger bar spacing – better for hydropower). Currently, gap widths/bar spacings of 10-20 mm are recommended but behavioral guidance effects open up the possibility of larger bar spacings.

During spring, Karlstad University in collaboration with Vattenfall and NINA, will experimentally study the behavior and passage performance of downstream migrating salmon smolts approaching a variety of low sloping intake racks. The experiments will be conducted in a new large experimental flume – Kungsrännan – at the Vattenfall hydraulic laboratory in Älvkarleby, Sweden. We will study the passage behavior and performance of smolts for alpha racks – inclined from the bottom up – and beta racks – angled from one side of the channel to the other – with different gap-widths (15-30 mm).

For this, we are looking for one interested and ambitious assistant to join us in Älvkarleby. The assistant will be salaried and is needed from mid-April to mid-June. Housing in the area can be provided. Are you interested in joining us? Contact Olle Calles for more information.

The principle behind downstream fish passage solutions using low sloping intake racks. The fish is swept and guided along a beta rack to a bypass at the rack’s downstream end.

Larry Greenberg at the Lake Champlain research conference.

The Lake Champlain research conference Lake Champlain: Our future is now was held at the Davis Center, University of Vermont, in Burlington 8-9 January 2018. The conference covered a variety of topics, including climate change and native fish restoration. Larry Greenberg, professor at Karlstad University, was invited as keynote speaker at the conference and gave the talk “Conservation of landlocked Atlantic salmon in a regulated river: Taking a holistic approach.” Read more about the conference here.

Andrew Harbicht recently started a postdoc within the NRRV-research group at Karlstad University. Here he briefly presents his background and what he plans to do during his postdoc:

“Hello, my name is Andrew Harbicht and I’m one of the new Post-Docs to have joined the NRRV. My research experience has primarily been focused on salmonids (rainbow trout, brook charr, and Atlantic salmon) and extends from fisheries modeling to population genetics and radio telemetry. I moved to Karlstad from Montreal, Canada, where I conducted my Ph.D. at Concordia University, working together with the US Fish and Wildlife Service on Atlantic salmon restoration in Lake Champlain. During that time we investigated the impacts of hatchery rearing and release techniques on the lifetime survival and dispersal rates of landlocked salmon and investigated the impact of a thiamine deficiency on the migratory capabilities of returning spawners.

My work with this group will focus on the implications of migratory barriers for longitudinal connectivity among Atlantic salmon populations in the Baltic Sea. With the ever-increasing efficiency of new hydroelectric turbines and the costs associated with maintaining outdated installations, more and more energy producers are opting to remove older facilities to focus their efforts on newer structures. The removal of such aging dams and other barriers to migration within rivers is undoubtedly a positive step for river connectivity, though exactly what changes will occur as a result of such actions is simply unknown in many situations. In fact, over the short term, the removal of barriers can cause as many changes as initial installation. In other situations, maintaining instream infrastructure may be the best option available to energy producer. In which case, including structures that permit fish passage is important, but which type of structure is best suited to the job isn’t always clear. Where several options exist, managers need access to accurate information to assist in their decision-making process.

With my project, I’ll be looking at the impact of removing a partial barrier to migration on the movement patterns of Atlantic salmon, as well as the river ecosystem itself in the Mörrumsån river in southern Sweden. Our holistic approach will monitor all levels of the ecosystem, from the mechanisms that shape river terrain (sedimentation) to the smallest bacteria (decomposition) and the largest predators (fish), as well as all things in between (food-webs). I will also be investigating the genetic consequences of changes in movement patterns that result from the removal of a hydroelectric plant. In another river, the river Emån, we’ll be assessing the performance of a new type of fish lift, and Archimedes screw, which permits upstream and downstream passage, all the while producing its own energy. If found to be effective, such devices could greatly improve connectivity in fragmented river landscapes.”

Andrew Harbicht (left) and William Ardren (right) releasing tagged fish in the Boquet River, a  tributary to Lake Champlain.

Andrew Harbicht tracking radio tagged Atlantic salmon.

Larry Greenberg, professor within the River Ecology and Management research group at Karlstad University, is currently studying how increased winter temperatures may affect Atlantic salmon development and subsequent behavior and physiology. Here he describes his research, and shares two videos (one in autumn temperature and one in summer temperature) used to measure (count) ventilation rates on Atantic salmon parr:

“Embryonic temperature conditions are expected to affect an organism’s behavior, as behavior is linked to traits such as metabolic rate and growth. Examining the effects of embryonic temperature is particularly relevant in today’s society as unprecedented rates of climate change are predicted to occur during this century, with a larger temperature increase expected in winter than in summer. Hence, climate change will most likely have large effects on ectotherms (cold-blooded animals) that overwinter their eggs, as is the case for salmonid fishes. The aim of this project is to study the effects of water temperature during the egg stage on the behavior, growth and metabolic rate of juvenile Atlantic salmon.

When it concerns metabolic rates, I hypothesized that elevated temperature during the egg stage will result in reduced standard metabolic rates for juvenile brown trout. Instead of measuring metabolic rates, I have measured breathing rates (ventilation rate), which has been shown to be correlated with metabolic rates. This was done in darkness when breathing rates are lowest, using an infrared-sensitive camera. The two film clips below show two different fish, both of which were raised at cold ambient water temperatures as eggs. One fish was filmed in 7 oC water and the other at 18 oC water.”

YouTube Preview Image YouTube Preview Image


On Tuesday, 18 April, Victoria Pritchard from the University of Turku, will give a seminar on “Conservation Genomics of Atlantic Salmon”. The seminar will be given at 13:30 in room 5F416 at Karlstad University.

Victoria has worked in the UK, USA, and Finland, and has published over 20 articles in leading conservation, evolutionary and fisheries journals. Everyone is welcome to attend the seminar.


The Herting dam with the low sloping intake rack in the intake channel to the left and the large nature-like fishway to the right. (Photo from Fiskevårdstekniks film)

Recently, the paper “Upstream and downstream passage of migrating adult Atlantic salmon: Remedial measures improve passage performance at a hydropower dam” was published in the journal Ecological Engineering. The paper was authored by Daniel Nyqvist, Anders Nilsson, Ingemar Alenäs, Jonas Elghagen, Mats Hebrand, Simon Karlsson, Stefan Kläppe and Olle Calles. They summarize the paper: “Habitat connectivity is central for life-cycle progression for migrating organisms. Passage of hydropower dams is associated with mortality, delay, and migratory failure for migrating fish, and the need for remedial measures to facilitate passage is widely recognized. Lately, nature-like fishways have been promoted for upstream migrating fish, and low-sloping turbine intake racks for downstream migrating fish, but evaluations of these remedial measures are largely lacking. At Herting hydropower dam in southern Sweden, a technical fishway for upstream migrating salmonids, and a simple bypass entrance/trash gate for downstream migrating fish have been replaced by a large nature-like fishway for up and downstream migrating fish, and a low-sloping rack, guiding downstream migrating fish to the bypass entrance, has been installed. In this study, we evaluated these remedial measures for adult Atlantic salmon, spawners and kelts, in a before/after improved remedial measures radio telemetry study. Passage performance was improved for both up- and downstream migrating adult Atlantic salmon after remedial measures. Passage rate increased for fish migrating in both directions, and overall delay decreased while overall passage efficiency increased for upstream migrating fish. After the improved passage solutions almost all tagged fish passed the dam with very little delay. Before modifications, upstream passage performance through the technical fishway was higher at higher temperatures, at day compared to night, and for males compared to females. No such effects were observed for the after-measures nature-like fishway, indicating good passage performance for both sexes under a wide range of environmental conditions. Similarly, for downstream migrating kelts, discharge positively affected passage rate before but not after the fishway modifications. Altogether, our work demonstrates the possibility of coexistence between hydropower and Atlantic salmon in a regulated river.”

Access the paper here. For questions, e-mail the authors.

John Piccolo, researcher at Karlstad University has written a short story for the Freshwater Working Group of the Society of Conservation Biology about his work in Klarälven. Read the story at the group’s facebook page or here below:

This is a story about some of the toughest field work I’ve carried out in over 20 years of research on salmon populations in either North America or Sweden, and describes the first documentation of a wild Atlantic salmon smolt run on the River Klarälven in central Sweden.

Klarälven is the longest river in Scandinavia, and is home to one of the world’s last remaining large-bodied landlocked Atlantic salmon (pictured) populations. The landlocked salmon migrate from Vänern, the largest lake in the EU, to spawn and rear in Klarälven (learn more about Klarälven here). After living for 2-4 years in the river, the salmon smolt migrate downstream to feed and grow in the lake. Although there has been anecdotal information about the smolt migration for many years, nobody had ever succeeded in trapping them to estimate production. Due to historical fishing pressure, and hydropower development, the Klarälven salmon are believed to be highly-threatened. However, salmon populations could also be recovering in Klarälven, because fishing pressures have reduced, and populations have gone from a low of less than 100 spawning adults to a record return of over 1000 in 2016. With this history in mind, we set out to better our understanding of salmon smolt populations in Klarälven and to guide more successful management and restoration.


A River Klarälven smolt (photo: Teemu Collin).

As many aquatic scientists know, trapping fishes or even invertebrates in rivers can be difficult – they all tend to migrate during rising or falling flows when water levels in the river are high. Keeping a net in the water can be difficult or impossible under such conditions. Months of organic debris that has been deposited along the river banks is suddenly washed into the stream, and nets need to be cleaned often, sometimes hourly 24-hours round. An additional variable in the mix is that in large rivers, organic debris can be large (picture large tree branches or even entire trees!)! High water levels, rapid flows, and large debris are challenging obstacles, and if these obstacles bring our sampling gear down, it can be quite dangerous to get the gear up and running again. I did my first smolt trapping back in 1996 on the Salmon River in Idaho, USA. I remember watching a mature conifer tree some 30 meters long being sucked into an eddy like a drinking straw, and being ejected clear out of the river on its’ way downstream. The power of a flooding river is truly awe-inspiring.


The crew working on the trap (photo: Teemu Collin).

It took us four sampling seasons, filled with trial and error, to achieve partial sampling success for our project. The first year we tried floating smolt traps like those often used for Pacific salmon. Although these can be adequate when there are large numbers of smolt migrating, we did not catch sufficient numbers of smolt to make mark-recapture estimates. During years two and three, we imported stationary traps, a Finnish design, that are anchored to the river bottom with 3-4-meter-long thick iron poles. It takes two days of hard labor for a work crew to drive these into the substrate by hand, balancing on the deck while holding the boat in position in the strong river flow (see photos). Inspired by the work to setup these Finnish traps, the title for this story comes from the classic song about mine workers – the iron bars didn’t weigh 16 tons, but just setting up the net was A LOT of work. Once the net was installed, the hard work began. Cleaning and emptying the net every day, and waiting for the spring flood to bring the salmon smolt. Although I was involved in this work, it is really our field crew that deserves most of the credit – it was a 24-hour a day, 7-day a week job, cleaning every day and staying vigilant for possible emergencies. During years two and three we came close to success – we had begun to catch larger numbers of smolt just at the time when flows became unmanageable and the net had to be removed. These years involved a lot of trial and error in operating and maintaining the net, cleaning, sewing mesh, clearing debris. The worst of it was cutting the net out during high flows, just when it seemed the smolt were beginning to run.


The Finnish trap (photo: Teemu Collin).

Each year we’d improved our technique and catch; the second year we caught over 300 smolt, and made our first rough estimates of production. However, we had yet to document a substantial wild smolt run. We managed to scrape together enough funding for one more try, and set to work for our final attempt. With two years’ experience, we installed the net in record time and had a good cleaning and maintenance routine. The field crew was on the job every day and smolt numbers began to climb as did the prognosis for the spring flood. They managed to continue to fish the net right into the beginning of the flood, and finally, on the last five days that they could fish before the flood, they hit the jackpot! SMOLTS! The field crew caught over 1000 smolt during their last five days – 425 the day before they had to remove the net. This one-week catch exceeded the total number of smolt we’d caught the previous two years combined. Our mark-recapture estimates suggest that over 15,000 wild salmon smolt migrated that year, documenting substantial production of wild landlocked Atlantic salmon, probably the largest remaining population in the world. Our hard work and persistence paid off – national and international awareness of the Klarälven salmon has continued to grow, and they are the focus of renewed efforts to maintain and restore wild salmon populations that have been impacted by centuries of anthropogenic impacts.”