On tuesday 27 October (tomorrow) Patrik Andreasson (Adjunct Professor, Luleå University of Technology; Specialist, Vattenfall AB) will give a seminar titled “Fish diagnostics by image recognition using machine learning (AI)”.

The seminar starts at 13:15 and will be held via zoom. Everyone who wants to are welcome to attend the seminar. Contact Olle Calles (olle.calles@kau.se) to receive a zoom link to the seminar.

Image recognition using AI, as a tool for fish identification, was mentioned on the Swedish news earlier this year. Follow this link to svt.se to watch a short video and to read more about the project (in Swedish).

Our former PhD student Anna Hagelin and several other researchers, amongst them Larry Greenberg, Olle Calles and Eva Bergman, recently published a new paper in the Canadian Journal of Fisheries and Aquatic Sciences.

They examined fishway passage of landlocked Atlantic salmon in River Klarälven, Sweden and brown trout in River Gudbrandslågen, Norway, and the influence of prior experience on passage success in 2012 and 2013. Fishway trap efficiency varied from 18 to 88% and was influenced by river discharge. Most salmon (81%) entered the fishway trap on days without spill, and salmon moved from the turbine area to the spill zone when there was spill, with small individuals showing a stronger reaction than large fish. Analysis of fish with and without prior trap experience showed that a higher percentage of the “naïve” fish (70% of salmon and 43% of the trout) entered the fishway traps than the “experienced” ones (25% of the salmon and 15 % of the trout). Delays for fish that entered the trap ranged from 3-70 days for salmon and 2-47 days for trout.

The paper is not publicly accessible, but can be requested via ResearchGate.

On Thursday 26 March, Kristine Lund Bjørnås, NRRV PhD-student, will defend her licentiate thesis “Modeling Atlantic salmon and brown trout responses to river habitat alteration”. The defense starts at 10:00. Asbjørn Vøllestad, Professor at the University of Oslo, is the opponent for Kristine’s defense.

Kristine’s defense will be held as an online meeting on Zoom (a video communication system commonly used by universities). You should be able to follow Kristine’s defense using this link:

https://kau-se.zoom.us/j/8357560294

The defense will also be streamed live on a bigscreen in lecture hall 1B309 (Sjöströmsalen) at Karlstad University, and everyone is welcome to watch the defense from the lecture hall. Please note that Kristine and the opponent will not be in the lecture hall.

On Tuesday 10 March, Kristine Lund Bjørnås, PhD student at Karlstad University, will give a seminar entitled “Modeling Atlantic salmon and brown trout responses to river habitat alteration”. The seminar starts at 13.15 in room 5F416, everyone who wants to is welcome to attend the seminar.

This seminar is a practice seminar in preparation for Kristine’s licentiate defense, which will be held Thursday 26 March at 10:00. More information about the licentiate seminar will be provided closer to the defense.

Kristine Lund Bjørnås and Niclas Carlsson taking point measurements of the physical habitat in Gullspångsforsen.

Anna Hagelin and the opponent Professor Ian Fleming, Memorial University of Newfoundland, Canada, at Anna’s PhD defense

Anna Hagelin successfully defended her PhD thesis with the title “Conservation of landlocked Atlantic salmon in a regulated river: Behaviour of migratory spawners and juveniles12 April this year.

Anna also presented her research at “forskningspodden” (the research podcast), which is a popular science podcast at Karlstad University. Here you can listen to Anna talk about her research on salmon conservation in river Klarälven (in Swedish).

Anna Hagelin’s PhD thesis nailed at the main entrance at Karlstad University.

PhD-defense: Conservation of landlocked Atlantic salmon in a regulated river

On Friday 12 April, Anna Hagelin will defend her PhD-thesis “Conservation of landlocked Atlantic salmon in a regulated river – Behaviour of migratory spawners and juveniles”. The defense will take place at 10:00 in room 1B309 (Sjöströmssalen) at Karlstad University. Everyone is welcome to attend the defense.

Ian Fleming (Memorial University of Newfoundland (Canada) will be the opponent and Jaakko Erkinaro (Natural Resources Institute, Finland), Eva Thorstad (Norwegian institute for Nature Research, Norway) and John Armstrong (Marine Scotland Science Freshwater Fisheries Laboratory, Scotland) constitute the grading committee.

 

Mini-symposium on Atlantic salmon

On Thursday 11 April, a mini-symposium on Atlantic salmon will be held in room 5F322 at Karlstad University, where the visiting researchers will give presentations:

 

Anna Hagelin nailed her thesis at the biology department at Karlstad University on Friday 22 March.

14:00-14:30: Ian Fleming, Memorial University of Newfoundland. Life-history dependent migration strategies in Atlantic salmon 

14:30-15:00: Jaakko Erkinaro, Natural Resources Institute Finland. Diversity in Atlantic salmon – evolutionary ecology and management implications 

15:00-15:30: Coffee break

15:30-16:00: Eva Thorstad, Norwegian Institute for Nature Research. Status of salmon in Norway and importance of the ocean phase 

16:00-16:30: John Armstrong, Marine Scotland Science Freshwater Fisheries Laboratory. Current and future applications of science for management of salmon in Scotland

On Tuesday 5 March (tomorrow) Anna Hagelin, PhD student at Karlstad University, will give a pre-dissertation talk titled “Conservation of landlocked Atlantic salmon in a regulated river: behaviour of migratory spawners and juveniles”. The seminar starts at 13:15 in room 5F416. Everyone is welcome to attend the seminar.

Anna will defend her doctoral thesis on 12 April at 10:00 in room 1B309 at Karlstad University. More information will come closer to the dissertation.

As part of the Gullspång salmon and -trout monitoring program, a group of people from the management group, Gammelkroppa Lax and Jyväskylä University/Fortum perform redd surveys in the river every year in early December. The salmon and trout in the Gullspång River spawn fairly late in the season, first trout in October-early November and then salmon in November until around the beginning of December.

This year I was invited to assist in the redd surveys, which I of course said yes to! Any chance to learn more about the Gullspång salmon and -trout is valuable for the model I’m making. Plus, it’s nice to get out of the office, even when the temperature is close to zero. And it’s also very inspiring to meet other people who are studying the Gullspång salmonids.

 

Lilla Åråsforsen. With sunrise at around 8:30 and sundown at 15:30, we had to be efficient to cover the three areas (about 6.4 hectares) in the precious daylight hours the four days.

 

So, we started by the Årås bay (Åråsviken) on Tuesday, and slowly worked our way upstream. With layers upon layers (upon layers…etc.) under our waders, and thick, wadded rubber gloves we walked gracefully around in the three spawning areas – Lilla & Stora Åråsforsen and Gullspångsforsen- to look for anything that could be a fish-made structure in the gravel beds. Sometimes we had redds that looked like textbook examples of redds, other times they didn’t look like anything. To confirm or disprove that it was an active redd, we did some careful digging in the pit itself to see if it contained at least two live eggs. The females often do some test diggings before the “real deal”.

We marked confirmed redds with conspicuously colored stones so that they can be found again in the spring; their location was also mapped with a GPS. Initially, we started with Finnish marking stones, but to our slight surprise they ran out (see why further down). We therefore had to settle with slightly lighter Swedish stones the last few days. Sadly, Norway was not represented with any stones (but we’ll see next year).

We also took measurements of the dimensions of the redds, as well as the depth and velocities along the gradient between start of pit and end of tail. I quickly took the role of propeller lady, taking the flow velocity measurements with NRRV’s OTT meters. It was interesting to see how much higher the velocity generally was in the tail compared to in the pit.

 

Horseshoe-formed tail of a large redd in Lilla Åråsforsen rapids marked with a white-painted and numbered stone. The marking stones were bought from a local stone dealer in Finland and brought to Gullspång.

 

I’ve saved the best for the end: the reason why we kept running out of marking stones was that we counted a record number of redds this year! We found redds also where they usually are not found, in total around 190 of them! It’s a careful victory, because we don’t yet know how many of them are salmon respective trout redds. But it was a nice early Christmas present, and I’m glad I joined!

/Kristine Lund Björnås

 

Learn more:

Management report on the monitoring results on Gullspång salmon and –trout in 2017:

http://extra.lansstyrelsen.se/vanern/Sv/publikationer/2018-2020/Sidor/Gullsp%C3%A5ngs%C3%A4lven_2017.aspx

 

Salmon females design their redds in a sophisticated way to increase velocities and dissolved oxygen to the egg pockets as shown with a 3D fluid dynamic model:

Tonina, D. & Buffington, J.M. (2009). Doi:10.1139/F09-146

Daniel Nyqvist, Jonas Elghagen, Marius Heiss and Olle Calles recently published the article “An angled rack with a bypass and a nature-like fishway pass Atlantic salmon smolts downstream at a hydropower dam” in the journal Marine and Freshwater Research.

In the abstract, the authors write:

Hydropower dams disrupt longitudinal connectivity and cause fragmentation of river systems, which has led to declines in migratory fish species. Atlantic salmon smolts rely on intact longitudinal connectivity to move downstream from rearing habitats in freshwater to feeding grounds at sea. Smolts often suffer increased mortality and delays when they encounter hydropower plants during their downstream migration. Currently, there are few examples of downstream passage solutions that allow safe and timely passage. We assessed the performance of two passage solutions at a hydropower dam, namely, an angled 15-mm rack with a bypass and a large nature-like fishway. The performance of these new fish passage solutions was evaluated by tracking radio-tagged Atlantic salmon smolts as they encountered the facilities. The radio-tagged smolts passed the dam 9.5 h after release (median) and exhibited a dam-passage efficiency of 84%, with passage rates increasing with body length. Fish passage occurred through both the rack bypass and the naturelike fishway. The passage efficiencies were 70–95% for the rack bypass and 47% for the nature-like fishway. The new fish passage facilities resulted in improved passage conditions at the site, confirming that angled racks with bypasses as best practise solutions for downstream passage, but also that large nature-like fishways may act as downstream passage routes for salmon.

Access the paper here, or contact any of the authors.

The experimental flume “Kungsrännan” under construction in Älvkarleby.

Hydropower dams block migration routes and disrupt longitudinal connectivity in rivers, thereby posing a threat to migratory fish species. Various fish passage solutions have been implemented to improve connectivity with varying success. For downstream migrating fish, low sloping turbine intake racks are used to guide fish to bypasses. Current knowledge, however, is based on hydropower plants with intake capacities <72 cm. There is also a trade-off between electricity generation and fish guidance (smaller bar spacing – better for fish, larger bar spacing – better for hydropower). Currently, gap widths/bar spacings of 10-20 mm are recommended but behavioral guidance effects open up the possibility of larger bar spacings.

During spring, Karlstad University in collaboration with Vattenfall and NINA, will experimentally study the behavior and passage performance of downstream migrating salmon smolts approaching a variety of low sloping intake racks. The experiments will be conducted in a new large experimental flume – Kungsrännan – at the Vattenfall hydraulic laboratory in Älvkarleby, Sweden. We will study the passage behavior and performance of smolts for alpha racks – inclined from the bottom up – and beta racks – angled from one side of the channel to the other – with different gap-widths (15-30 mm).

For this, we are looking for one interested and ambitious assistant to join us in Älvkarleby. The assistant will be salaried and is needed from mid-April to mid-June. Housing in the area can be provided. Are you interested in joining us? Contact Olle Calles for more information.

The principle behind downstream fish passage solutions using low sloping intake racks. The fish is swept and guided along a beta rack to a bypass at the rack’s downstream end.