Anna Hagelin and the opponent Professor Ian Fleming, Memorial University of Newfoundland, Canada, at Anna’s PhD defense

Anna Hagelin successfully defended her PhD thesis with the title “Conservation of landlocked Atlantic salmon in a regulated river: Behaviour of migratory spawners and juveniles12 April this year.

Anna also presented her research at “forskningspodden” (the research podcast), which is a popular science podcast at Karlstad University. Here you can listen to Anna talk about her research on salmon conservation in river Klarälven (in Swedish).

Anna Hagelin’s PhD thesis nailed at the main entrance at Karlstad University.

PhD-defense: Conservation of landlocked Atlantic salmon in a regulated river

On Friday 12 April, Anna Hagelin will defend her PhD-thesis “Conservation of landlocked Atlantic salmon in a regulated river – Behaviour of migratory spawners and juveniles”. The defense will take place at 10:00 in room 1B309 (Sjöströmssalen) at Karlstad University. Everyone is welcome to attend the defense.

Ian Fleming (Memorial University of Newfoundland (Canada) will be the opponent and Jaakko Erkinaro (Natural Resources Institute, Finland), Eva Thorstad (Norwegian institute for Nature Research, Norway) and John Armstrong (Marine Scotland Science Freshwater Fisheries Laboratory, Scotland) constitute the grading committee.


Mini-symposium on Atlantic salmon

On Thursday 11 April, a mini-symposium on Atlantic salmon will be held in room 5F322 at Karlstad University, where the visiting researchers will give presentations:


Anna Hagelin nailed her thesis at the biology department at Karlstad University on Friday 22 March.

14:00-14:30: Ian Fleming, Memorial University of Newfoundland. Life-history dependent migration strategies in Atlantic salmon 

14:30-15:00: Jaakko Erkinaro, Natural Resources Institute Finland. Diversity in Atlantic salmon – evolutionary ecology and management implications 

15:00-15:30: Coffee break

15:30-16:00: Eva Thorstad, Norwegian Institute for Nature Research. Status of salmon in Norway and importance of the ocean phase 

16:00-16:30: John Armstrong, Marine Scotland Science Freshwater Fisheries Laboratory. Current and future applications of science for management of salmon in Scotland

The study focused on the behavior of kelts at the Edsforsen dam – the first dam that the downstream migrating kelts encounter.

The scientific paper “Intake Approach and Dam Passage by Downstream-migrating Atlantic Salmon Kelts” by Daniel Nyqvist, Eva Bergman, Olle Calles, and Larry Greenberg was recently published in River Research and Applications. The paper presents a study on the behavior of downstream migrating kelts in the River Klarälven, Sweden. In the abstract the authors write:

“Studying fish behaviour at hydropower dams is needed to facilitate the design and improvement of fish passage solutions, but few studies have focused on Atlantic salmon kelts. Here, we used radio telemetry (n = 40, size range = 50–81 cm) and acoustic sonar to study kelt movements in the forebay as well as their dam passage survival and subsequent migration success past multiple dams. We also compare radio telemetry and acoustic sonar observations of fish behaviour and used acoustic sonar to measure the depth distribution of fish approaching the turbine intake zone. Passage success at the dam was 41%, and mortality was largely associated with turbine passage (62%). The two fish that passed via the spill gates survived and continued their downstream migration. At the dam, all but one radio-tagged kelt approached the intake zone shortly after arrival to the forebay, and sonar data showed that approaching fish were predominantly surface oriented (72%, 88% and 96% of the observations were less than 1, 2 and 3 m deep, respectively). Turbine passage rate from the intake zone was higher at night than at day, indicating that the lack of visual cues may reduce the barrier effect of the 70-mm conventional trash rack. Turbine passage rate also increased with increasing hydropower generation. The percentage of observed upstream movements away from the intake zone compared with the total number of observations was considerably greater in the radio telemetry data (41%) than in the sonar data (4%). Only one fish survived passage of all eight hydropower dams to reach the lake. This low-passage survival underscores the need for remedial measures to increase the survival of migrating kelts, and the fish’s surface orientation as well as their rapid approach to the intake rack should be taken into account when designing such measures.”

Read the paper here. If you don’t have access to the journal’s content, email any of the authors.

John Piccolo, researcher at Karlstad University has written a short story for the Freshwater Working Group of the Society of Conservation Biology about his work in Klarälven. Read the story at the group’s facebook page or here below:

This is a story about some of the toughest field work I’ve carried out in over 20 years of research on salmon populations in either North America or Sweden, and describes the first documentation of a wild Atlantic salmon smolt run on the River Klarälven in central Sweden.

Klarälven is the longest river in Scandinavia, and is home to one of the world’s last remaining large-bodied landlocked Atlantic salmon (pictured) populations. The landlocked salmon migrate from Vänern, the largest lake in the EU, to spawn and rear in Klarälven (learn more about Klarälven here). After living for 2-4 years in the river, the salmon smolt migrate downstream to feed and grow in the lake. Although there has been anecdotal information about the smolt migration for many years, nobody had ever succeeded in trapping them to estimate production. Due to historical fishing pressure, and hydropower development, the Klarälven salmon are believed to be highly-threatened. However, salmon populations could also be recovering in Klarälven, because fishing pressures have reduced, and populations have gone from a low of less than 100 spawning adults to a record return of over 1000 in 2016. With this history in mind, we set out to better our understanding of salmon smolt populations in Klarälven and to guide more successful management and restoration.


A River Klarälven smolt (photo: Teemu Collin).

As many aquatic scientists know, trapping fishes or even invertebrates in rivers can be difficult – they all tend to migrate during rising or falling flows when water levels in the river are high. Keeping a net in the water can be difficult or impossible under such conditions. Months of organic debris that has been deposited along the river banks is suddenly washed into the stream, and nets need to be cleaned often, sometimes hourly 24-hours round. An additional variable in the mix is that in large rivers, organic debris can be large (picture large tree branches or even entire trees!)! High water levels, rapid flows, and large debris are challenging obstacles, and if these obstacles bring our sampling gear down, it can be quite dangerous to get the gear up and running again. I did my first smolt trapping back in 1996 on the Salmon River in Idaho, USA. I remember watching a mature conifer tree some 30 meters long being sucked into an eddy like a drinking straw, and being ejected clear out of the river on its’ way downstream. The power of a flooding river is truly awe-inspiring.


The crew working on the trap (photo: Teemu Collin).

It took us four sampling seasons, filled with trial and error, to achieve partial sampling success for our project. The first year we tried floating smolt traps like those often used for Pacific salmon. Although these can be adequate when there are large numbers of smolt migrating, we did not catch sufficient numbers of smolt to make mark-recapture estimates. During years two and three, we imported stationary traps, a Finnish design, that are anchored to the river bottom with 3-4-meter-long thick iron poles. It takes two days of hard labor for a work crew to drive these into the substrate by hand, balancing on the deck while holding the boat in position in the strong river flow (see photos). Inspired by the work to setup these Finnish traps, the title for this story comes from the classic song about mine workers – the iron bars didn’t weigh 16 tons, but just setting up the net was A LOT of work. Once the net was installed, the hard work began. Cleaning and emptying the net every day, and waiting for the spring flood to bring the salmon smolt. Although I was involved in this work, it is really our field crew that deserves most of the credit – it was a 24-hour a day, 7-day a week job, cleaning every day and staying vigilant for possible emergencies. During years two and three we came close to success – we had begun to catch larger numbers of smolt just at the time when flows became unmanageable and the net had to be removed. These years involved a lot of trial and error in operating and maintaining the net, cleaning, sewing mesh, clearing debris. The worst of it was cutting the net out during high flows, just when it seemed the smolt were beginning to run.


The Finnish trap (photo: Teemu Collin).

Each year we’d improved our technique and catch; the second year we caught over 300 smolt, and made our first rough estimates of production. However, we had yet to document a substantial wild smolt run. We managed to scrape together enough funding for one more try, and set to work for our final attempt. With two years’ experience, we installed the net in record time and had a good cleaning and maintenance routine. The field crew was on the job every day and smolt numbers began to climb as did the prognosis for the spring flood. They managed to continue to fish the net right into the beginning of the flood, and finally, on the last five days that they could fish before the flood, they hit the jackpot! SMOLTS! The field crew caught over 1000 smolt during their last five days – 425 the day before they had to remove the net. This one-week catch exceeded the total number of smolt we’d caught the previous two years combined. Our mark-recapture estimates suggest that over 15,000 wild salmon smolt migrated that year, documenting substantial production of wild landlocked Atlantic salmon, probably the largest remaining population in the world. Our hard work and persistence paid off – national and international awareness of the Klarälven salmon has continued to grow, and they are the focus of renewed efforts to maintain and restore wild salmon populations that have been impacted by centuries of anthropogenic impacts.”

I Klarälven fångas lekvandrande lax och öring i en fiskfälla i Forshaga, det första kraftverket de stöter på under sin vandring upp i älven. Fällan består av en laxtrappa som slutar i ett falskt fall som lockar fisken in i fisken i en bassäng. Från fällan i Forshaga transporteras de fångade fiskarna i lastbil förbi åtta vattenkraftverk och släpps ut i norra Värmland. Därifrån fortsätter de sin lekvandring älven. Fisken rör sig fritt i området mellan Edsforsens- och Höljes kraftverk. Under de senaste åren har arbete bedrivits för att förbättra verksamheten vid fällan, och det har troligtvis bidragit till det rekordhöga antalet fångad och transporterad vild lax och öring under 2016. Enligt den statistik som finns tillgänglig har det aldrig fångats lika många vilda laxar respektive öringar något enskilt år sedan åtminstone slutet av 1940-talet. Ännu återstår ett par veckor innan fällan stänger för säsongen.


Antalet vilda laxar fångade i fällan i Forshaga (bild från Gammelkroppa lax AB).


Antalet vilda öringar fångade i fällan i Forshaga (bild från Gammelkroppa lax AB).


Igår höll Larry Greenberg, professor vid Karlstads Universitet, en presentation om våra forskningsprojekt i Klarälven på ett möte arrangerat av Klarälvens Vattenråd i samverkan med Fortum och Karlstads Universitet. Fokus i presentation låg på förbättrad nedströmspassage för vild laxfisk i Klarälven. Larry rapporterar om ett välbesökt och engagerat möte: “Cirka 25 personer var med och lyssnade och det fanns gott om frågor efteråt. Många åhörare ville se åtgärder så snart som möjligt även om man förstår att det tar tid…”


Edsforsens kraftverk med turbin-intaget i förgrunden och spill-luckor längre bak i bild. På fotot syns också antenner vi använde för att studera beteende avradiomärkta kelt i relation till dammen och kraftverket.

Läs mer om laxen i Klarälven i rapporten “Vänerlaxens fria gång”.

John Piccolo writes about the ongoing Masters course Ecological Resource Management at Karlstad University:

“Our Masters course on Ecological Resource Management is now underway for fall 2015.  Students can read the course on campus or by distance, and we have a field and lab study week in the beginning of November. This year we discussed watershed management and invasive species in the historic Alsterdalen, home of reknowned poet Gustaf Fröding. Professor Lutz Eckstein led the discussion on invasive plants (such as late-blooming Lupine, see group foto). Then we drove over the divide to Klarälvsdalen and downriver to the Almar Forest (Almar skogen). There we discussed forest management with Ove Nystrand, forester for Svenska Kyrkan. 

On the second day we traveled down the River Gullspångsäven, home of the world-reknowned landlocked salmon, Gullspångslaxen. We met Robert Skogh, Mariestads kommun, and got a great overview of his efforts over the past 20 years to protect Gullspångslaxen. Then it was back up to the River Klarälven, where Johnny Norrgård and Olle Calles led the discussion on migration and conservation of Klarälvslaxen (Klarälven salmon).  In the course we use Lake Vänern salmon and trout as a case study for resource management. The students follow up with their own case studies, which will include diverse topics such as Lynx, Lupine, woodpeckers and windpower/bat interactions. It is an exciting course and educational for the teachers and well as the students. “


John Piccolo (far left) and students at the Masters course “Ecological Resource Management”.


Invasive Canadian goldenrod (Solidago canadensis) by the River Klarälven.


Small stream in the Almar forest.

Imorgon, fredagen den 23:e oktober, kommer Todd Deligan från WHOOSHH Fish Transport System (dvs företaget bakom den beryktade laxkanonen) på snabbbesök till Karlstads Universitet. Han kommer att ge en presentation i samband med förmiddagsfikat.

YouTube Preview Image

Johnny Norrgård, från Fortum och KaU, kommer även att informera om Fortums framtidsplaner i Forshaga med nya anläggningar för avelsfisk samt produktion av öring- och laxungar till Vänern.

Presentationerna ges från klockan 09:30 i rum 5F416. Alla är välkomna!


Kelt framför intagsgaller (foto: Herman Wanningen).

Den vetenskapliga artikeln ”Post-spawning survival and downstream passage of landlocked Atlantic salmon (salmo salar) in a regulated river: is there potential for repeat spawning?”, om efterleksöverlevnad, nedströmsmigration och passage hos lax-kelt i Klarälven, har publicerats i River Research and Applications. Författare är Daniel Nyqvist, Olle Calles, Eva BergmanAnna Hagelin och Larry Greenberg.

I abstraktet skriver författarna: “Repeat salmonid spawners may make large contributions to total recruitment and long term population stability. Despite their potential importance, relatively little is known about this phase of the life history for anadromous populations, and nothing has been reported for landlocked populations. Here, we studied post-spawning behaviour and survival of landlocked Atlantic salmon in relation to downstream dam passage in the River Klarälven, Sweden. Eight hydropower stations separate the feeding grounds in Lake Vänern from the spawning grounds in the River Klarälven, and no measures to facilitate downstream migration are present in the river. Forty-nine percent of the salmon survived spawning and initiated downstream migration. Females and small fish had higher post-spawning survival than males and large fish. The postspawners migrated downstream in autumn and spring and remained relatively inactive in the river during winter. Downstream migration speed in the free flowing part of the river was highly variable with a median of 9.30 km/day. Most fish passed the first hydropower station via upward-opening spill gates after a median residence time in the forebay of 25 min. However, no tagged fish survived passage of all eight hydropower stations to reach Lake Vänern. This result underscores the need for remedial measures to increase the survival of downstream migrating kelts.”

Läs artikeln här. Om du inte har tillgång till tidskriftens innehåll men ändå vill läsa artikeln, maila någon av författarna!

Fish Passage 2015

Posted by Daniel Nyqvist | Konferens

Fiskvägen vid Geesthacht i Elbe.

Under förra veckan organiserades Fish Passage – International conference on river connectivity best practices and innovations i Groningen, Nederländerna. Konferensen innehöll en mängd presentationer om fiskvandring och fiskpassage. Presentatörerna var biologer, ingenjörer, forskare och branschfolk och kom från sex olika världsdelar. NRRV och Karlstads Universitet var väl repressenterat: Larry Greenberg var moderator för en keynote session och presenterade “Conservation of a landlocked salmonid population in a regulated river: Taking a holistic approach”. Olle Calles var en av konferensens huvudorganisatörer och presenterade “On the performance of a new upstream and downstream passage facility for diadromous fish species” samt “A telemetry study on marble trout (Salmo marmoratus) and Italian barbel (Barbus plebejus) at a nature-like fish ramp in an Alpine river”. Stina Gustafsson var med i konferensens Advisory board och presenterade “Habitat compensation in a nature-like fishway”. Min egen presentation hade titeln “Postspawning survival and downstream passage of landlocked Atlantic salmon (Salmo salar) in a regulated river: Is there potential for repeat spawning?”. Konferensens abstracts kan läsas här

Under helgen innan konferensen gavs fem kurser på temat fiskpassage, närmare bestämt Dam removal, Downstream Passage, Techinical and Nature-like fishway designs, Fishway evaluations och Integrating Fish Passage in Watershed Restoration Plans: How to prioritize actions and monitor their effectiveness. Olle Calles var en av kursledarna på kursen om nedströmspassage.

Konferensen avslutades med studiebesök vid nederländska fiskvägar, slussar och tidvattensbarriärer. Eller till Elbe och en av Europas största fiskvägar vid dammen i Geesthacht utanför Hamburg.